PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

Chapter 4: Trigonometric Functions 4.2: Trigonometric Functions of Acute Angles

2|Page

Evaluate using a calculator. Make sure your calculator is in the correct mode. Give answers to 3 decimal places and then draw the triangle that represents the situation.
A) $\sin 53^{\circ}$
B) $\cos \frac{2 \pi}{5}$
C) $\tan 154^{\circ}$
D) $\cot \frac{\pi}{9}$
E) $\csc 220$
F) $\sec \frac{8 \pi}{5}$

$\mathbf{5} \mid \mathrm{Page}$

| Solve the triangle ABC for all of its unknown parts. Assume C is the
 right angle.
 $\beta=62 \quad \mathrm{a}=7$ |
| :--- | :--- |
| |
| Example 6: From a point 340 feet away from the base of the Peachtree |
| Center Plaza in Atlanta, Georgia, the angle of elevation to the top of the |
| building is 65°. Find the height of the building. |

6|Page

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy
Chapter 4: Trigonometric Functions
What you'll Learn About

- Trig functions of any angle/Trig functions of real numbers
- Periodic Functions/The Unit Circle functions for θ
A) $(5,4)$
B) $(-3,4)$
C) $(-2,-5)$
D) $(-4,-1)$
E) $(0,-3)$
F) $(3,0)$

Determine the sign (+ or -) of the given value without the use of a calculator.
A) $\sin 53^{\circ}$
B) $\cos \frac{2 \pi}{5}$
C) $\tan 154^{\circ}$
D) $\cot \frac{\pi}{9}$
E) $\csc 220^{\circ}$
F) $\sec \frac{8 \pi}{5}$
$\mathbf{8 \| P a g e}$

	Evaluate without using a calculator A) Find $\sin \theta$ and $\tan \theta$ if $\cos \theta=\frac{3}{4}$ and $\cot \theta<0$
B) Find $\sec \theta$ and $\csc \theta$ if $\cot \theta=\frac{-6}{5}$ and $\sin \theta>0$	

$9 \mid \mathrm{Page}$

$\mathbf{1 0 | P a g e}$

	$30-60-90$ Triangle

Unit Circle, Fill in the blank

| A) $\sin 120^{\circ}$ | B) $\cos \frac{2 \pi}{3}$ |
| :--- | :--- | :--- |
| | D) $\cot \frac{-13 \pi}{6}$ |
| C) $\tan \frac{13 \pi}{4}$ | |
| | |
| E) $\csc \frac{7 \pi}{4}$ | F) $\sec \frac{23 \pi}{6}$ |

$13 \mid \mathrm{Page}$
\(\left.\begin{array}{|l|ll|}\hline Find sine, cosine, and tangent for the given angle.

A) 90^{\circ} \& B)-\frac{\pi}{2}\end{array}\right]\)| D) $\frac{-7 \pi}{2}$ |
| :--- |
| C) 6π |

$\mathbf{1 4 | P a g e}$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy
Chapter 4: Trigonometric Fucntions 4.7: Inverse Trigonometric Functions

What you'll Learn About

- Inverse Trigonometric Functions and their Graphs

The graph of $y=\sin x$

The graph of $y=\sin ^{-1} x=\arcsin x$

$\mathbf{1 5} \mid \mathrm{Page}$

$\mathbf{1 6} \mid \mathrm{Page}$

$\mathbf{1 7 | P a g e}$

$\mathbf{1 8 | P a g e}$

19|Page

$\mathbf{2 0 | P a g e}$

$21 \mid \mathrm{Page}$

$22 \mid \mathrm{Page}$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy
Solving Trigonometric Equations

$\mathbf{2 3 | P a g e}$

$\mathbf{2 4 | P a g e}$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

 Chapter 4: Trigonometric Functions

$\mathbf{2 8 | P a g e}$
\(\left.\begin{array}{|l|ll|}\hline A) \mathrm{y}=\cos (2 \mathrm{x}) \& B) y=\cos \frac{x}{2} \& C) y=\cos \left(\frac{-3 x}{4}\right)

how the period of the function and use the language of transformations to describe\end{array}\right\}\)| Araph 1 period of the function without using your calculator. |
| :--- |
| A) $y=3 \sin \frac{x}{2}$ |

29|Page

$30 \|$ age

31|Page
Determine the vertical shift and phase shift of the function and then sketch the graph
A) $y=\cos \left(x+\frac{\pi}{6}\right)-1$
B) $y=\sin \left(x-\frac{\pi}{3}\right)+2$

$$
A m p=A=\frac{M a x-\text { Min }}{2}
$$

Vertical $=(\mathrm{C})=\frac{\text { Max }+ \text { Min }}{2}$
period $=p$
HorizontalStretch/Shrink

$$
\mathrm{B}=\frac{2 \pi}{\mathrm{p}}
$$

How to choose an
appropriate model based on the behavior at some given time, T .
$y=A \cos B(t-T)+C$
if at time T the function attains a maximum value
$y=-A \cos B(t-T)+C$ if at time T the function attains a minimum value
$\mathrm{y}=\mathrm{A} \sin \mathrm{B}(\mathrm{t}-\mathrm{T})+\mathrm{C}$ if at time T the function halfway between a
minimum and a maximum C) $y=5 \sin 4 \pi x+6$
A) $y=3 \sin \left(x-\frac{\pi}{4}\right)+2$
$y=-A \sin B(t-T)+C$
if at time T the function
halfway between a
maximum and a minimum
value
State the Amplitude and period of the sinusoid, and relative to the basic function, the phase shift and vertical translation.
B) $y=-2 \cos \left(3 x-\frac{\pi}{4}\right)-4$

$32 \mid \mathrm{Page}$

$33 \mid \mathrm{Page}$

$34 \mid \mathrm{Page}$

$36 \mid P$ a g e

$37 \mid \mathrm{Page}$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

 4.5: Graphs of Tan/Cot/Sec/CscChapter 4: Trigonometric Functions

$\mathbf{3 8 | P a g e}$
$\left.\begin{array}{|l|l|l|}\hline \text { A) } \mathrm{y}=\sec (4 \mathrm{x}) \\ \text { Describe the graph of the function in terms of a basic trigonometric function. Locate } \\ \text { the vertical asymptotes and graph } 2 \text { periods of the function. } \\ y=2 \sec \frac{4 x}{3}\end{array}\right\}$

Describe the graph of the function in terms of a basic trigonometric function. Locate the vertical asymptotes and graph 2 periods of the function. A) $\quad y=\csc \left(\frac{x}{3}\right)$		
B) $y=4 \csc 2 \pi x$		
	D. $y=-\csc (\mathrm{x})+1$	

$\mathbf{4 0 | P a g e}$

$41 \mid \mathrm{Page}$

$42 \mid \mathrm{Page}$

